- 2. ISLER, O., RUEGG, R., CHOPARD-dit-JEAN, L. H., WINTERSTEIN, A. and WIS, O. Helv. Chim. Acta, 41 : 786 (1958).
- 3. NAZAROV, I. N., GUSEV, B. P. and GUNAR, V. I. Zhur. Obshchei. Khim. 28: 1198 (1958).
- 4. POPJAK, G., CORNFORTH, J. W., CORNFORTH, Rita H., RYHAGE, R. and GOODMAN, D. S. J. Biol. Chem., 237 : 56 (1962).
- 5. JACKMAN, L. M., RUEGG, R., RYSER, G., PLANTA, C. V., GLOOR, U., MAYER, H., SCHUDEL, O., KOFLER, M. and ISLER, O. *Helv. Chim. Acta*, 48 : 1332 (1965).
- 6. AZEROD, R. and CYROT, M. O. Bull. Soc. Chim. France, 9: 3740 (1965).
- 7. WADSWORTH, W. S., Jr. and EMMONS, W. D. J. Am. Chem. Soc., 83: 1733 (1961).
- JAMES, A. T. In New Biochemical Separations, JAMES, A. T. and MORRIS, L. J. Ed., D. Van Nostrand Company, Ltd. London, England, 310 (1964).
- 9. FEDELI, E. et al. J. Lipid Res., 7: 437 (1966).

Some observations on the Labelling of P_2S_5 with carrier-free ³²P formed in elementary Sulphur by the Nuclear Reaction ³²S(n,p)³²P

Received on 26th December 1966

 P_2S_5 labelled with ³²P can be obtained by synthesis or isotopic exchange. On the labelling of P_2S_5 by isotopic exchange there are already some indications. Thus, J.E. Casida (¹) obtained P_2S_5 labelled with ³²P by an isotopic exchange between $HNa_2^{32}PO_4$ or $H_3^{32}PO_4$ and P_2S_5 . M. Dubini and G. P. Perucca (²) studied the labelling of P_2S_5 with the carrier-free ³²P present in the residu of distillation of the neutron irradiated elementary sulphur. The exchange yield after 3 hours at 300° C was 42%. If a mixture of red phosphorus and elementary sulphur (ratio 2 : 5) were reacted in the presence of the residiual ³²P the labelling yield of P_2S_5 was 50-95% (²). From these paper (¹, ²) we drew the conclusion that the labelling of P_2S_5 by isotopic exchange can be carried out with ³²P in various chemical forms. It is clear that the chemical form of the residual ³²P (²) is not similar with $HNa_2^{32}PO_4$ or $H_3^{32}PO_4$ (¹).

In our experiments we also studied the labelling of P_2S_5 with the carrier-free ³²P formed in elementary sulphur by the nuclear reaction ³²S(n, p)³²P, but in different experimental conditions. The purpose of this paper was to obtain some information on the labelling mechanism of P_2S_5 . This experiments were put in accordance with our earlier observations (³) on the chemical state of ³²P atoms in the elementary sulphur. Thus, in the deaerated sulphur targets ³²P atoms are stabilized in an elementary chemical state, but in the untreated sulphur targets in an oxydated chemical state. Also, we observed (⁴) that the carrier-free ³²P formed in elementary sulphur can be adsorbed on the red phosphorus.

Taking into account these observations the labelling of P_2S_5 with the carrier-free ³²P in following experimental conditions was studied.

A — Synthesis of ${}^{32}P_2S_5$ from red phosphorus and irradiated elementary sulphur. (ratio 2:5).

B — Synthesis of $^{32}P_2S_5$ after the removal of sulphur target by the adsorbtion of ^{32}P on the red phosphorus and then its reaction with the elementary sulphur (unirradiated sulphur)

C — Isotopic exchange between ³²P atoms present in the sulphur targets and P_2S_5 .

In all cases the experiments were carried out with untreated and deaerated sulphur targets.

The radioactivity inducted in P_2S_5 by two methods was determined :

i = The transformation of ${}^{32}P_2S_5$ in ${}^{32}PSCl_3$ according to the chemical reaction : ${}^{32}P_2S_5 + PCl_5 \rightarrow {}^{32}PSCl_3$ and then the measuring of its radioactivity.

i' = The measuring of radioactivity inducted in PSCl₃ by a catalysed isotopic exchange according to the chemical reaction ${}^{32}P_2S_5 + PSCl_3 \rightleftharpoons {}^{32}PSCl_3 + P_2S_5$. This catalysed isotopic exchange was reported in an our earlier paper (⁵).

In this paper we used some notes which have the following significations :

Si.[32 Pox] = untreated irradiated sulphur with 32 P atoms stabilized in an oxydated chemical state.

Si. $[^{32}P]$ = deaerated irradiated sulphur with ^{32}P atoms stabilized in an elementary chemical state.

 $Pr.[^{32}Pox] = carrier-free {}^{32}P$ in an oxidated form adsorbed on red phosphorus.

 $Pr.[^{32}P] = carrier-free ^{32}P$ in an elementary form adsorbed on red phosphorus.

Analytical grade Z.W.K.S. (made in Poland) crystalline sulphur was irradiated in the core of the VVR-S reactor for 10-30 hours in a neutron flux of 2×10^{13} n/cm² sec and in a gamma flux of 10^{8} R/hour. The amount of sulphur was 150 mg and the radioactivity of radiophosphorus 3-10 mCi/g sulphur. Red phosphorus used for synthesis of P₂S₅ was Merck product. PCl₅ used to transform P₂S₅ in PSCl₃ was B.D.H. product. P₂S₅ used for isotopic exchange was obtained by synthesis from red phosphorus and elementary sulphur ⁽⁶⁾. PSCl₃ used in the isotopic exchange reactions was obtained by synthesis from PCl₃ and sulphur ⁽⁷⁾. The deaerated sulphur targets were obtained by a technique indicated elsewhere ⁽⁸⁾.

For the experiments A the irradiated sulphur targets were mixed with red phosphorus in the ratio 2:5, Then, the reaction mixture was melted on free flame in a glass ampoule and in a nitrogen current. After the end of reaction, the radioactivity of ${}^{32}P_2S_5$ by two way was determined

 $i = {}^{32}P_2S_5$ was reacted with PCl₅, then ${}^{32}PSCl_3$ was distilled, hydrolysed into KOH solution and its radioactivity measured.

 $i' = {}^{32}P_2S_5$ was treated with 10 ml of PSCl₃ in the presence of AlCl₃ (500 mg). After refluxing (one hour) PSCl₃ was removed by distillation, hydrolysed and its radioactivity measured.

In the experiments B, to adsorb ³²P atoms on the red phosphorus the irradiated sulphur targets were dissolved in 15 ml of CS_2 , then the red phosphorus (200 mg) was added and the mixture was refluxed for 15-20 minutes. After refluxing CS_2 is removed by decontation and the red phosphorus was washed with 6-7 portions of pure CS_2 in order to remove all the sulphur. This red phosphorus was mixed with an amount of sulphur (ratio 2 : 5) and melted as above.

For the experiments C the irradiated sulphur targets was mixed with 1 gramme of P_2S_5 , then the mixture was reacted at 150° C for one hour (experiments 1, 2 Table 2) and at 440° C for five minutes (experiments 3, 4 Table 2). Then, P_2S_5 was reacted with PCl_5 and ³²PSCl₃ formed was distilled, hydrolysed and its radioactivity measured. To determine the exchange yield the total radioactivity of ³²P was measured for each experiment. The radioactivity was

measured with a standard G. M. thin Window end counter and for the ^{35}S adsorbtion measurements a standard absorber of 32 mg Al/cm² was used.

In Table 1 the experimental results obtained in the synthesis of $P_{2}S_{5}$ are presented. The results show that in all experiments the labelling yield is not affected by the chemical states of ³²P atoms present in the irradiated sulphur targets ([³²Pox] or [³²P]). These experiments confirm the results of J. E. Casida⁽¹⁾ and M. Dubini⁽²⁾.

The experiments (5-8) show that the labelling yield is not affected by the removal of sulphur targets and the adsorbtion of ³²P atoms on the red phosphorus. On the other hand, this conclusion is very important for the obtaining of ³²P₂S₅ of a high activity (without ³⁵S) by this way.

TABLE 1. Determining of inducted radioactivity in ${}^{32}P_2S_5$ obtained by its synthesis in the presence of the carrier-free ³²P formed in elementary sulphur by nuclear reaction ${}^{32}S(n,p){}^{32}P$.

			Radioactivity of ³² P	
No. crt.	System studied	Experimental conditions	in residue	in ³² P ₂ S ₅
1 a	$S: [32Dow] \perp Dr$	Synthesis of P_2S_5 in the pre-	10-38	62-90
2 6	Si[rrox] + Pr	(untreated sulphur)	16-30	70-84
3 a	Si.[³² P] + Pr	Synthesis of P_2S_5 in the presence of the sulphur targets (deaerated sulphur)	20-25	75-80
4 ^b			5-27	73-95
<u>5</u> a	Pr.[^{s2} Pox] + S	Synthesis of P_2S_5 after the adsorbtion of [³² Pox] on the red phosphorus	9-38	62-91
6 ^b			10-27	73-90
7 a	Dr [32D] C	Synthesis of P_2S_5 after ad-	7-10	90-93
8 b	11.1 1] + 5	phosphorus	6-11	89-94
	1	1	1	1

^a Determination of inducted radioactivity in ${}^{32}P_2S_5$ by the measuring of radioactivity of ${}^{32}PSCl_3$ resulting by the following reaction: ${}^{32}P_2S_5 + PCl_5 \rightarrow {}^{32}PSCl_3$ ^b Determining of inducted radioactivity in ${}^{32}P_2S_5$ -by the measuring of radioactivity of ${}^{32}PSCl_3$ labelled by the following isotopic exchange reaction: ${}^{32}P_2S_5 + PSCl_3 \rightleftharpoons {}^{32}PSCl_3 + P_2S_5$

It is not possible only, by the interpretation of results presented in the table to explain the mechanism of labelling of P_2S_5 .

In this discussion we thought that can be the following mechanisms. For example, we will take into consideration the case of [32Pox] atoms (untreated sulphur targets).

I. The first mechanism

 ${}^{32}Pox + S \rightarrow {}^{32}P_2S_5$ (synthesis reaction)

II. The second mechanism

 ${}^{32}Pox + P_{red} \rightleftharpoons {}^{32}P_{red} + Pox \text{ (exchange reaction)}$ ${}^{32}P_{red} + S \rightarrow {}^{32}P_2S_5 \text{ (synthesis reaction)}$

III. The third mechanism

 $S + P_{red} \rightarrow P_2S_5$ (synthesis reaction) ${}^{32}Pox + P_2S_5 \rightleftharpoons {}^{32}P_2S_5 + Pox$ (exchange reaction)

The first mechanism should explain the forming of ${}^{32}P_2S_5$ by a direct reaction between the sulphur atoms and ${}^{32}P$ atoms present in the irradiated sulphur targets.

But the existence of ${}^{32}P_2S_5$ in the irradiated sulphur targets was discussed elsewhere ${}^{(3, 5)}$ and we arrived at the conclusion that the radiophosphorus atoms are not in the chemical form of ${}^{32}P_2S_5$. This conclusion results also from the following experiment. The irradiated sulphur targets were put in the same condition of temperature as a mixture of elementary sulphur and red radiophosphorus then ${}^{32}P_2S_5$, formed was investigated by the reaction with PCl₅ and its transformation in ${}^{32}PSCl_3$. The existence of ${}^{32}PSCl_3$ (respectively of ${}^{32}P_2S_5$) was put into evidence only in the case of the mixture : ${}^{32}Pred + S$.

TABLE 2. Determining of inducted radioactivity in ${}^{32}P_2S_5$ by the isotopic exchange reaction between the carrier-free ${}^{32}P$ present in the irradiated sulphur targets and P_2S_5 .

			Radioactivity ³² P%	
No. crt.	System studied	Experimental conditions	in residue	in ³² P ₂ S ₅
1	$\mathrm{Si.}[^{32}\mathrm{Pox}] + \mathrm{P_2S_5} + \mathrm{C_2H_2Cl_4}$	Refluxing at 150° C for one hour	94-98	2-6
2	$\mathrm{Si}_{[^{32}\mathrm{Pox}]} + \mathrm{P}_{2}\mathrm{S}_{5}$	Melting at 150° C for one hour	89-95	5-11
3	$Si.[^{32}Pox] + P_2S_5$	Melting at 440° C for five minutes	31-19	69-81
4	Si.[³² P] + P ₂ S ₅	Melting at 440° C for five minutes	30-16	70-84

LABELLING OF P_2S_5 WITH CARRIER-FREE ^{32}P

Other arguments in favour of an explanation that the carrier-free ³²P formed in elementary sulphur is not in form of sulphide will be presented in a future paper.

The second mechanism should explain the forming of ${}^{32}P_2S_5$ by an isotopic exchange reaction between ${}^{32}Pox$ and the red phosphorus (Pred). But this mechanism is invalidated by our earlier experiments ⁽⁸⁾. Thus, between ${}^{32}Pox$ and Pred is not an isotopic exchange because in the reaction system : Pred[${}^{32}Pox$] + PCl₅ was not put into evidence the forming of ${}^{32}PCl_3$.

In Table 2 the experimental results obtained in the isotopic exchange reactions between the carrier-free ³²P atoms and P_2S_5 are presented. These results show that the labelling of P_2S_5 is in accordance with the mechanism C. On the other hand, the results show that the labelling yield of P_2S_5 is very much affected by the temperature.

P. I. BEBESEL

C. N. TURCANU

Institute of Atomic Physics, P.O. Box 35, Bucharest, Romania

REFERENCES

1. CASIDA, J. E. - Acta Chem. Scand., 12: 1691 (1958).

2. DUBINI, M. and PERUCCA, G. P. - J. Labelled Comp., 1: 308 (1965).

3. BEBESEL, P. I. and TURCANU, C. N. - J. Inorg. Nucl. Chem. (under press).

4. BEBESEL, P. I. and TURCANU, C. N. - Rev. Roumaine Chim. (under press).

5. BEBESEL, P. I. and TURCANU, C. N. - J. Inorg. Nucl. Chem. (under press).

6. Inorganic isotopic synthesis W. A. Benjamin, Inc. New York ,153 (1962).

7. Inorganic Synthesis. McGraw Hill. Publishing Company Ltd., New York, Vol. IV, 71 (1953).

^{8.} BEBESEL, P. I. and TURCANU, C. N. - Rev. Roumaine Chim. (under press).